Цена дроссельной заслонки ВАЗ 2114 8 клапанов

Электронная заслонка (дроссель) принцип работы и зависимость от других систем

Как работает электронная дроссельная заслонка, какие сюрпризы она вам может преподнести и почему производители ставят именно электронный дроссель а не всем привычный тросовый привод. Что следует знать и делать, чтобы электроника служила надежно и безотказно — обо всем читайте в этой весьма объемной статье.

Принцип работы электронного дросселя

Для управления электронной дроссельной заслонкой используется блок управления двигателем (ЭБУ) и шаговый электродвигатель с редуктором, совмещенный конструктивно с дроссельной заслонкой.

ЭБУ обычно использует в качестве расчетного параметра величину крутящего момента двигателя. Чтобы блок понимал, какие действия производит водитель неотемлемой частью электронного управления является датчик положения педали акселератора.

Датчик положения педели представляет собой переменный резистор, сопротивление которого (а значит и проводимое напряжение) изменяется в зависимости от положения педали газа.

Блок управления открывает дроссельную заслонку в соответствии с нажатием педали газа. В это же время в блок поступает большое количество сигналов от остальных датчиков системы управления. Статья о неисправностях инжекторного двигателя.

На основании всех показаний ЭБУ вычисляет необходимую мощность двигателя и соответствующим образом открывает или закрывает заслонку (регулируя тем самым подачу воздуха в цилиндры), а так же регулирует и количество впрыскиваемого форсунками топлива.

В это же время датчик положения дроссельной заслонки показывает блоку насколько на самом деле открыта дроссельная заслонка, обеспечивая таким образом обратную связь. То есть блок управления не только открывает своими командами заслонку, но он еще и «видит» открылась ли она на самом деле.

Весь процесс управления требует всего нескольких миллисекунд для достижения нужных в данный момент характеристик автомобиля.

Аварийные режимы работы

Применение электроники делает затруднительным диагностику посредством внешнего осмотра. Вы можете только визуально проверить чистоту самого дросселя и легкость перемещения заслонки. Дроссель должен быть чистым! А заслока не должна закусывать.

В случае неисправности узла электронного дросселя система включает аварийный режим «ограничения рывков» для возможности безопасного движения к месту ремонта, либо полного отключения возможности движения.

В таком режиме возможны два варианта развития событий:

1. Система по каким-то причинам не может управлять дроссельной заслонкой. Например неисправен или нет показаний от датчика положения дроссельной заслонки, или неисправен шаговый двигатель и дроссель неспособен перемещаться (открываться и закрываться).

В таком случае ЭБУ отключает управление зажиганием двигателя. Электронная заслонка устанавливается в положение «оключено». Система полностью отключает функции управления зажиганием.

2. Система на может контролировать намерение водителя . В этом случае ЭБУ ограничивает выходную мощность мотора. Например такое возможно если неисправен или нет сигнала от датчика положения педали акселератора.

Для предотвращения повреждения двигателя блок управления снижает приращение скорости и мощности двигателя. Вся система управления двигателем переводится в режим принудительного холостого хода. Обороты двигателя практически не изменяются при нажатии на педель газа.

Режимы ограниченного функционирования электронной дроссельной заслонки

1. Принудительное закрытие

Блок управления сообщает о неисправности, когда в системе подачи воздуха и управления дроссельной заслонкой имеется какой-то сбой. В этом случае ЭБУ перекрывает подачу топлива в цилинрды, отключает зажигание, закрывет дроссель и двигатель глохнет.

2. Режим принудительного управления мощностью холостого хода

Если при работе мотора на холостом ходу система управления не может нормально использовать дроссельную заслонку (например она закусывает при перемещении), то ЭБУ прекращает управление дроссельной заслонкой.

Она устанавливается в положение по умолчанию. А все управление осуществляется путем отключения подачи топлива в один цилиндр и задержкой угла опережения зажигания.

3. Режим принудительного холостого хода

Об этом режиме мы уже говорили с вами выше. Повторим. Когда намерение водителя не может быть распознано (например при потере сигнала с датчика положения педели газа). В этом режиме реакция двигателя на нажатие педали отсутствует. Автомобиль не развивает обороты и практически не едет.

4. Режим управления ограниченной мощностью

Когда система не может использовать дроссельную заслонку для регулирования мощности. В таком случае система определяет по положению педели акселератора, работает ли двигатель на оборотах холостого хода или ускоряется.

Система управляет мощностью двигателя путем прекращения подачи топлива или задерживая зажигание. В такой момент могут плавать обороты двигателя. Машина может двигаться неравномерно в таком режиме, так как обороты будут плавать. Таким автмобилем будет сложно управлять.

Читайте также:  Бортовой компьютер Multitronics C-590 - ТехноДевайс

5. Когда точность определения намерений водителя снижена.

Датчик положения педали состоит из двух переменных резисторов. Так вот когда сигнали этих резисторов вследствие поломки слишком сильно отличаются, система ограничивает крутящий момент двигателя.

Реакция двигателя на изменение положения педали замедляется, автомобиль начинает тупить. Снижается мощность двигателя, мотор плохо тянет.

Электронный и электромагнитный дроссель для люминесцентных ламп

Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

Основные функции

Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

  • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
  • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

Исходя из описанных выше причин, необходимо использовать ПРА.

ПРА электромагнитного типа

Принцип работы

Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .

Типичная схема подключения

На схеме обозначены:

  • EL – лампа газоразрядного (люминесцентного) типа;
  • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
  • LL –дроссель (электромагнитный);
  • спирали лампы (1 и 2);
  • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт) Емкость конденсатора (мкФ)
15 4,50
18 4,50
30 4,50
36 4,50
58 7,00

Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор, это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

  • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
  • существенно сокращается ресурс оборудования.

Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

  • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
  • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
  • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
  • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
  • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
  • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
  • контакты стартера остывают и размыкаются.

Тандемное подключение

Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

Схема тандемного подключения

Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

Стартеры S10 и S2 на 220 и 110 В соответственно

Особенности дросселей электромагнитного типа

Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше:

  • наличие громоздкого и «шумного» дросселя;
  • стартеры, к сожалению, не отличаются надежностью;
  • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
  • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
  • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.
Читайте также:  Chevrolet Lanos Комплектация SX DRIVE2 - АвтоВызов

Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

Пускорегулирующий аппарат электронного типа (ЭПРА)

Массово ЭПРА появились не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

  • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
  • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
  • снижение эффекта стробирования значительно расширило сферу применения;
  • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
  • КПД может достигать 97%;
  • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
  • нет необходимости компенсировать реактивную нагрузку;
  • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

ЭПЛА внешний вид и внутренне устройство

Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

ЭПРА, размещенный в цоколе

В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.

Схема типичного ЭПРА

Перечень элементов:

  • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
  • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В, С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
  • диоды: VD1-VD7 – 1N400;
  • транзисторы: Т1 и Т2 – 13003;
  • диодный симистор VS – DB3.

Завершая тему ЭПРА, необходимо заметить — их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

Подключение без балласта

При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

Бездроссельный способ подключения

Для реализации такого подключения понадобится:

  • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
  • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
  • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

Что такое дроссель

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель. Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.

Устройство индуктивной катушки

Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

Низкочастотные устройства

Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

Читайте также:  При торможении бьет педаль тормоза почему и что делать

Высокочастотные элементы

Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Основные характеристики

К основным характеристикам относятся следующие показатели:

  • величина индукции;
  • потеря сопротивления;
  • потери сердечника;
  • потери из-за вихревых токов;
  • паразитная ёмкость;
  • ТКИ (температурный коэффициент индуктивности).

Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.

Разновидности дросселей

Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

Электронные аналоги

На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

Следует заметить. Для высокочастотных приборов транзисторы не используют.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Видео

Ссылка на основную публикацию
Adblock detector