Что такое карбон или углепластик - общая информация

Ядерный тест

Российские физики проверили на прочность отечественные композитные материалы, сообщает пресс-служба Института ядерной физики им. Г.И. Будкера Сибирского отделения РАН.

Углепластик состоит из двух материалов: армирующего углеродного волокна и полимерной матрицы (связующего). Прочностные характеристики материала на растяжение обеспечиваются в основном за счет углеволокна. За остальные механические параметры, такие как прочность на сжатие и сдвиг, в основном отвечает связующее.

«Один из лучших на сегодняшний день вариантов связующего для композитных материалов – цианат-эфирные связующие. Этот уникальный класс полимеров обладает лучшими, чем у эпоксидной смолы, параметрами жесткости и трещиностойкости. «Синтез-проект» организовал разработку и выпуск собственного олигоциануратного связующего для композитных материалов космического назначения», – объясняет научный сотрудник Научно-исследовательского института космических и авиационных материалов (НИИКАМ) Илья Вихров.

Поскольку долговечность работы космических летательных аппаратов на орбите в значительной степени определяется радиационной стойкостью их конструкционных материалов и оборудования, специалистам «Синтез-проект» нужно было определить максимальную дозу радиации, при которой цианат-эфирное связующее и композитные материалы на его основе будут сохранять свои свойства.

Цианат-эфирный углепластиковый сотовый заполнитель

На стойкость проверили четыре типа образцов: собственно эпоксидного и цианат-эфирного связующих, стеклопластика и углепластика на основе цианат-эфирного связующего. Исследования проводились при дозах 10, 20, 50, 100, 200, 500 МГр. Набор дозы 500 МГр потребовал работы в течение месяца. Температура образцов в процессе обработки не превышала 55°С.

Несмотря на потерю прочности собственно цианат-эфирного связующего при дозах свыше 200 МГр, механические параметры углепластика остаются неизменными вплоть до дозы 500 МГр, стеклопластик с тем же связующим после набора такой высокой дозы сохранил 70 % от исходной прочности. Эта доза (500 МГр) на два порядка превышает ту, что получают космические аппараты в реальных условиях. Для примера, работающий на геостационарной орбите аппарат в течение 15 лет набирает порядка 3 МГр. Таким образом, отечественные образцы успешно выдержали испытания.

Сталь против карбона

Если вы уверенно решили приобрести карбоновую раму, задумайтесь. Прежде чем так легко расставаться с большой суммой денег, подумайте, действительно ли карбон является именно тем материалом, который вам необходим? Не поймите неправильно, карбоволокно действительно имеет ряд несомненных преимуществ, но повальное увлечение им в последнем сезоне больше похоже на обычную моду. Да, профессионалы пользуются им, чтобы увеличить свои показатели и быстрее достичь финиша, а масса фанатов просто идет следом за своими лидерами, покупая то же самое.

Вы можете понаблюдать за весенними классиками, Джиро, Вуэльтой и Туром и сделать заметки о том, кто на чем ездит. И заметить, что отнюдь не дешевые детали сплошь состоят из карбона, содержание которого в велосипеде едва ли не больше, чем на Международной космической станции.

Такое поведение похоже на погоню за модной одеждой, только это – погоня за инновациями в велоспорте.

Действительно, почему бы карбоволокну не быть популярным? Рама и вилка практически невесомы, они имеют потрясающие амортизационные способности, к тому же, углеродное волокно никогда не перегревается. О популярности этого материала свидетельствует и тот факт, что ведущие производители стальных рам, такие, как Steelman, Serotta и Independent Fabrications, выделяют средства на изготовление рам из карбона.

Прекрасная стальная Cinelli Supercorsa в практически первозднанном исполнении выпускается до сих пор.

Для многих профессиональных гонщиков предложение тренироваться, не говоря уже об участии на соревновании на велосипеде со стальной рамой, будет рассмотрено как шутка. По какой-то необоснованной причине стальной велосипед сегодня в определенных кругах приобрел репутацию медленного, тяжелого и технологически отсталого агрегата – по аналогии с репутацией дизельных автомобилей в США.

Но реальность такова, что сталь еще никогда не была прочнее, легче и долговечнее, чем она является в наши дни. Более того, никакой другой материал не может предоставить наиболее универсальный велосипед, которому будет соответствовать практически любой райдер.

Штампованная тайваньская рама из карбоволокна зачастую стоит дороже, чем индивидуальный заказ стальной рамы. Конечно же, такой карбон даже не сможет приблизиться по качеству езды, которую может обеспечить сталь. И это не говоря уже о прочности и долговечности, которые гарантированы, если ухаживать за рамой должным образом.

Поэтому, прежде чем со всех ног бежать в магазин за карбоновой рамой, подумайте дважды. Вначале узнайте о преимуществах стали.

Долговечность

Да, углеродное волокно выглядит здорово, но его внешний вид не выдержал того испытания временем, как вид стальной рамы, изготовленной под заказ. Созданные вручную наконечники из нержавеющей стали, идеально спаянная головная труба и тщательный подход к мелочам обеспечивают гораздо больше персонализации, чем серийная карбоновая рама. Это все равно, что покупать костюм в брендовом магазине, или заказать его ручное изготовление, чтобы он был подогнан в точности для вас. Каждая пуговица будет пришита вручную, а каждый стежок будет отслеживаться наметанным глазом.

Стальные рамы, изготовленные на заказ такими мастерскими, как Baylis, Eisentraut или White, ко всему прочему, показывают, что их владелец уважает сохранение традиции создания важнейших деталей именно вручную, как делалось и сто лет назад. Типичная же карбоновая рама может быть изготовлена за пару часов или меньше, она стандартна и анонимна, и выходит из-под конвейера вместе с тысячами своих собратьев. Брайан Бейлис утверждает, что каждая из его рам – это не менее 100 часов ручного труда мастера, и за 40 лет его опыта он не построил двух одинаковых экземпляров. Покупая такой стальной велосипед, вы получаете безвременно стильный предмет искусства.

Читайте также:  Двигатель ГАЗ ЗМЗ 406, Технические Характеристики, Какое Масло Лить, Ремонт Двигателя ЗМЗ 406, Дораб

Минимальная весовая разница

Наверное, больше всего жалуются на сталь по той причине, что она значительно тяжелее углерода. Однако многие слишком преувеличивают – на самом деле разница не так уж и велика.

С развитием технологий углерод стал основным материалом, используемым в велосипедной промышленности. Карбоновые рамы раздвигают все границы представления о минимальном весе – он может достигать 900 грамм и ниже! Однако технологии по производству стали также не стояли на месте – преимущественно из-за того, что в условиях растущей прочности появилась возможность сделать стены труб более тонкими.

Легкий стальной каркас можно найти и в весовой категории 1,3 кг – правда, не слишком большая разница для обычного взрослого человека? Не стоит так сильно зацикливаться на весе. Разница в весе имеет большое значение только в случае, если этот велосипед будет использоваться для гонок, где дорога каждая секунда. В остальном, вейтвиннерство — это не более чем хобби. Например, в таких дисциплинах, как циклокросс, наличие велосипеда с минимальным весом – это скорее необходимость. Здесь параметр массы выигрывает перед удобством во время езды, так как спортсменам приходится периодически нести его на плече. В такой ситуации карбон, конечно же, имеет неоспоримое преимущество. Тем не менее, задние перья углеродной рамы имеют такую конструкцию, что очень быстро забиваются грязью, в итоге — выигрыш в весе менее заметен.

Прочность

Мастера работали со сталью и изучали ее свойства более ста лет в силу многих причин, и не в последнюю очередь именно из-за ее прочности. И это подтверждается тем, что по улицам городов до сих пор ездят велосипеды, которые были сконструированы и 50, и 100 лет назад.

Стальная рама прощает слишком затянутые болты, а вот карбон может потрескаться в любой момент. Кроме того, будьте особенно осторожны при перевозке вашего карбонового велосипеда на автомобиле – всего один неосторожный поворот может лишить вас двухколесного друга.

Помните, карбоновые детали в большинстве случаев не подлежат ремонту. Мелкие трещины ремонтируются. Но неудачное падение может повредить раму настолько, что восстановление будет невозможно.

Велосипед Jeremy Honorez после серьезного падения

Ценность

Помните, что вы можете за те же деньги заказать стальную раму, созданную специально под параметры вашего тела, сделанную с любовью умелыми руками мастера, который тщательно будет следить за каждой мелочью. Все же это не идет ни в какое сравнение с массовым производством на тайваньских сборочных линиях.

А на Ebay вы всегда сможете найти красивейшие рамы. Одна из таких — CIOCC Designer 84 за $990.

Заказ стальной рамы для велосипеда означает, что эта деталь будет сконструирована и изготовлена в точном соответствии с вашим ростом, весом, длиной внутренней стороны бедра и спецификой туловища. Езда на таком велосипеде будет означать удобство, качество и безопасность.

Богатый выбор стальных труб и сплавов дает гораздо большую свободу. Идеальная адаптация рамы под вес райдера, стиль катания и так далее. В это же время, карбон дает меньшую степень свободы, зачастую современные рамы просто универсальны.

При надлежащем уходе стальная рама, скорее всего, переживет вас, в то время как углеродная вряд ли переживет вашу задолженность по кредиту, в который вы увязли, лишь бы купить ее.

Заключение

Из всех вышеупомянутых причин преимущества стали над карбоном, главной, наверное, будет долговечность. Вы сильно раскошеливаетесь, чтобы улучшить свой велосипед. Учтите, что на нем вы будете ездить каждый день (оптимистично), и каждые две недели участвовать в гонках (еще более оптимистично). У вас ограниченное количество средств, как и у большинства людей в этом мире? Вы хотите себе прочный и надежный велосипед, который прослужит вам действительно долго, чтобы, если это возможно, его можно было бы продать, когда вам надоест? Чтобы сделать это с чистой совестью, зная, что он прослужит следующему владельцу столько же, сколько и вам, не стоит останавливать свой выбор на углероде.

Владение карбоновым велосипедом имеет смысл в некоторых ситуациях, например, если вы подписали контракт и получаете немало средств от спонсоров, или состоите в профессиональной команде гонщиков, где можете получать новую модель ежемесячно. В таких ситуациях прочность стоит на втором месте, потому что вы либо продаете велосипед после одного сезона гонок, либо бесплатно ездите на новых на постоянной основе.

Читайте также:  Доводчики дверей; Pandora Калининград Фирменный установочный центр

Если же вашей целью является покупка надежного велосипеда, жизнь которого продлится как минимум 5-10 лет, вначале проверьте, есть ли в вашем городе частные мастерские, изготавливающие рамы на заказ. Найдите в Интернете видеозаписи и фотографии с ведущих мировых выставок и осознайте, что такое настоящее искусство и красота добросовестно сделанного гоночного материала.

Стоит отметить, что индустрия продолжает активно развиваться, и карбоволокно — вместе с ней. На данный момент существует достаточно большое число марок карбоволокна, что делает этот материал уже более универсальным и дает большую свободу выбора.

Что такое углепластик (карбон)

Общие положения

Углепластик — это композиционный многослойный материал, представляющий собой полотно из углеродных волокон в оболочке из термореактивных полимерных (чаще эпоксидных) смол, Carbon-fiber-reinforced polymer .

Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber.

Но в настоящее время к карбонам относят все композитные материалы, в которых несущей основой являются углеродные волокна, а вот связующее сможет быть разным. То есть карбон и углепластик объединились в один термин, привнеся путаницу в головы потребителей.

Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления карбона его стоимость будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса.

Применение карбона

Изначально карбонбыл разработан для спортивного автомобилестроения и космической техники, но благодаря своим отличным эксплуатационным свойствам, таким как малый вес и высокая прочность, получил широкое распространение и в других отраслях промышленности:

  • в самолетостроении,
  • для спортивного инвентаря: клюшек, шлемов, велосипедов.
  • удочек,
  • медицинской техники и др.

Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать.

Технические характеристики и особенности карбона

Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.

Армирующий элемент, общий для всех видов углепластика — углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.

Дополнительно армирование может проводиться каучуком, придающим серый оттенок карбону.

Карбон характеризуются высокой прочностью, износостойкостью, жёсткостью и малой, по сравнению со сталью, массой. Его плотность — от 1450 кг/м³ до 2000 кг/м³. Технические характеристики углеволокна можно посмотреть всравнительной таблице плотности, температуры плавления и прочностных характеристик.

Еще один элемент, используемый для армирования вместе с углеродными нитями — кевлар . Это те самые желтые нити, которые можно видеть в некоторых разновидностях углепластика. Некоторые недобросовестные производители выдают за кевлар цветное стекловолокно, окрашенные волокна вискозы, полиэтилена, адгезия которых со смолами гораздо хуже, чем у углепластика, да и прочность на разрыв в разы меньше.

Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком.

Особенности технологии изготовления углеродного волокна

Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением, полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, то есть практически их обугливанием. Вот так выглядит под микроскопом нить после обугливания.

После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита.

Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько раз, очищая графитовое волокно от азота, повышая концентрацию углерода и делая его прочнее. Чем выше температура, тем прочнее получается волокно. Этой обработкой концентрация углерода в волокне увеличивается до 99%.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют « штапелированными », а могут быть непрерывные нити на бобинах.

Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

Читайте также:  Блок предохранителей и реле Nissan Primera P12

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя.

Достоинства и недостатки

Более высокая цена карбона по сравнению со стеклопластиком и стекловолокном объясняется более сложной, энергоемкоймногоэтапной технологией, дорогими смолами и более дорогостоящим оборудованием (автоклав). Но и прочность с эластичностью при этом получаются выше наряду со множеством других неоспоримых достоинств:

  • легче стали на 40%, легче алюминия на 20% (1,7 г/см3-2,8 г/см3-7,8 г/см3),
  • карбониз углерода и кевлара немного тяжелее, чем из углерода и резины, но намного прочнее, а при ударах трескается, крошится, но не рассыпается на осколки,
  • высокая термостойкость: карбонсохраняет форму и свойства до температуры 2000 ○С.
  • обладает хорошими виброгасящими свойствами и теплоемкостью,
  • коррозионная стойкость,
  • высокий предел прочности на разрыв и высокий предел упругости,
  • эстетичность и декоративность.

Но по сравнению с металлическими и деталями из стекловолокна углеводородные детали имеют недостатки:

  • чувствительность к точечным ударам,
  • сложность реставрации при сколах и царапинах,
  • выцветание, выгорание под воздействием солнечных лучей, для защиты покрывают лаком или эмалью,
  • длительный процесс изготовления,
  • в местах контакта с металлом начинается коррозия металла, поэтому в таких местах закрепляют вставки из стекловолокна,
  • сложность утилизации и повторного использования.

Изготовление карбона

Существуют следующие основные методы изготовления изделий из углеткани:

1. Прессование или « мокрый » способ. Полотно выкладывается в форму и пропитывается эпоксидной или полиэфирной смолой. Излишки смолы удаляются или вакуумформованием или давлением. Изделие извлекается после полимеризации смолы. Этот процесс может проходить или естественным путем или ускоряется нагревом. Как правило, в результате такого процесса получается листовой углепластик.

2. Формование. Изготавливается модель изделия (матрица) из гипса, алебастра, монтажной пены, на которую выкладывается пропитанная смолой ткань. При прокатке валиками композит уплотняется и удаляются излишки воздуха. Затем проводится либо ускоренная полимеризация и отверждение в печи, либо естественная. Этот способ называют « сухим » и изделия из него прочнее и легче, чем изготовленные « мокрым » способом. Поверхность изделия, изготовленного «сухим» способом, ребристая (если его не покрывали лаком).

К этой же категории можно отнести формование из листовых заготовок — препрегов.

Смолы по своей способности полимеризоваться при повышении температуры разделяются на « холодные » и « горячие ». Последние используют в технологии препрегов, когда изготавливают полуфабрикаты в виде нескольких слоев углеткани с нанесенной смолой. Они в зависимости от марки смолы могут храниться до нескольких недель в неполимеризованном состоянии, прослоенные полиэтиленовой пленкой и пропущенные между валками для удаления пузырьков воздуха и лишней смолы. Иногда предпреги хранят в холодильных камерах. Перед формованием изделия заготовку разогревают, и смола опять становится жидкой.

3. Намотка. Нить, ленту, ткань наматывают на цилиндрическую заготовку для изготовления труб. Кистью или валиком наносят послойно смолу и сушат преимущественно в печи.

Во всех случаях поверхность нанесения углепластика смазывается разделительными смазками для простого снятия получившегося изделия после застывания.

Углепластик своими руками

Изделия на основе углеволокна можно формовать и самим, что уже давно и успешно применяется при ремонте велосипедов, спортивного инвентаря, тюнинге автомобилей. Возможность экспериментировать с наполнителями для смолы, со степенью ее прозрачности предоставляют широкое поле для творчества любителям автотюнинга карбоном. Подробнее об изготовлении деталей из карбона своими руками, в том числе и для автотюнинга можно почитать здесь.

Как следует из описанной выше технологии, для формования необходимо:

  • форма-матрица,
  • углеродное полотно,
  • смазка для формы для легкого съема готовой заготовки,
  • смола.

Где брать углеткань? Тайвань, Китай , Россия . Но в России это относится к «конструкционным тканям повышенной прочности на основе углеволокна». Если найдете выход на предприятие, то вам очень повезло. Много компаний предлагают готовые наборы для отделки автомобилей и мотоциклов «Сделай сам», включающих фрагменты углеткани и смолу.

70% мирового рынка углеткани производят тайваньские и японские крупные бренды: Mitsubishi, TORAY, TOHO, CYTEC, Zoltec и пр.

В общих чертах процесс самостоятельного изготовления углепластика выглядит так:

  1. Антиадгезивом смазывается форма.
  2. После его высыхания наносится тонкий слой смолы, на который прикатывается или прижимается углеткань, для выхода пузырьков воздуха.
  3. Затем наносится еще один слой смолы для пропитки. Можно нанести несколько слоев ткани и смолы, в зависимости от требуемых параметров изделия.
  4. Смола может полимеризироваться на воздухе. Это происходит обычно в течение 5 дней. Можно поместить заготовку в термошкаф, нагретый до температуры 140-180 ◦С, что значительно ускорит процесс полимеризации.

Затем изделие извлекаем из формы, шлифуем, полируем, покрываем лаком, гелькоутом или красим.

Ссылка на основную публикацию
Adblock detector