Коэффициент вязкости воды

Вязкость

Содержимое (Table of Contents)

Вязкость (внутреннее трение) – свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Вязкость ОФС.1.2.1.0015.15

Взамен ГФ XII, ч.1, ОФС 42-0038-07

Вязкость (внутреннее трение) – свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой.

Основными кинематическими переменными для жидкостей служат деформация и ее скорость. Поэтому для изучения реологических характеристик жидких сред устанавливают связь между приложенными внешними нагрузками и кинематическими параметрами.

Жидкости, вязкость которых не зависит от напряжения сдвига и при определенной концентрации и температуре является постоянной величиной в соответствии с законом Ньютона, называются ньютоновскими. Жидкости, вязкость которых не подчиняется закону Ньютона и зависит от напряжения сдвига, называются неньютоновскими.

Различают динамическую, кинематическую, относительную, удельную, приведенную и характеристическую вязкости. Для неньютоновских жидкостей, главным образом, характерна структурная вязкость. Структурная (эффективная или кажущаяся) вязкость – вязкость при данном напряжении сдвига.

Динамическая вязкость или коэффициент вязкости (η) – это приходящаяся на единицу поверхности тангенциальная сила, называемая также напряжением сдвига (τ), выраженная в паскалях (Па), которую необходимо приложить для того, чтобы переместить слой жидкости площадью 1 м 2 со скоростью (v) 1 метр в секунду (м∙c -1 ), находящийся на расстоянии (х) 1 м относительно другого слоя, параллельно плоскости скольжения.

Величина dv/dx представляет собой градиент скорости и определяет скорость сдвига D, выраженную в обратных секундах (с -1 ).

Таким образом, вязкость (η) определяется отношением напряжения сдвига (τ) к скорости сдвига D и определяется по формуле:

Динамическая вязкость (η) в системе СИ выражается в Паскаль-секундах (Па ∙ с) или миллипаскаль-секундах (мПа ∙ с); в системе СГС – в пуазах (П) или сантипуазах (сП). Также динамическая вязкость может измеряться в дин ∙ с/см 2 и кгс ∙ с/м 2 и производных от них единицах.

При измерении вязкости ньютоновских жидкостей в капиллярных вискозиметрах определяют кинематическую вязкость.

Кинематическую вязкость (ν), выраженную в метрах квадратных на секунду (м 2 ∙ с -1 ), получают делением величины динамической вязкости η на плотность жидкости ρ, выраженную в килограммах на метр кубический (кг ∙ м -3 ), измеренную пикнометром или плотномером при той же температуре:

Кинематическая вязкость в системе СИ выражается в метрах квадратных на секунду (м 2 ∙с –1 ) или миллиметрах квадратных на секунду (мм 2 ∙ с –1 ); в системе СГС – в стоксах (Ст) или сантистоксах (сСт).

При работе с растворами используются такие реологические характеристики, как относительная, удельная, приведенная и характеристическая вязкости.

Относительная вязкость (ηотн.) – отношение вязкости раствора к вязкости растворителя:

Часто вязкость выражают как удельную вязкость (ηуд), которая показывает, какая часть вязкости раствора обусловлена присутствием в нем растворенного вещества:

(3)

η – вязкость раствора;

ηо – вязкость растворителя.

Удельная вязкость, отнесенная к единице концентрации раствора, называется приведенной вязкостью (ηприв):

где с – концентрация раствора.

Для растворов полимеров вязкость является функцией молекулярных масс, формы, размеров и гибкости макромолекул. Чтобы определить структурные характеристики полимеров, приведенную вязкость экстраполируют к нулевой концентрации. В этом случае вводится понятие характеристической вязкости [η]:

(5)

Характеристическая вязкость выражается в единицах, обратных единицам концентрации.

Для определения вязкости применяются капиллярные, ротационные вискозиметры и вискозиметры с падающим шариком.

Капиллярные вискозиметры обычно используются для определения вязкости при одном значении скорости сдвига, поэтому применяются в основном для исследования ньютоновских жидкостей. Они просты и удобны в обращении.

Ротационные вискозиметры позволяют определять реологические свойства жидкостей в широком диапазоне скоростей сдвига, что особенно важно для неньютоновских жидкостей.

Вискозиметр с падающим шариком (вискозиметр Гепплера) предназначен для измерения вязкости прозрачных ньютоновских жидкостей.

Читайте также:  Расход топлива Renault Duster (отзывы реальных владельцев)

Допускается использование других вискозиметров при условии, что точность и правильность измерений будет не хуже, чем в случае использования вискозиметров, описанных ниже.

Измерение вязкости на капиллярных вискозиметрах

Для измерения кинематической вязкости применяются капиллярные вискозиметры типа Оствальда и Уббелоде различной модификации.

Стеклянные капиллярные вискозиметры предназначены для определения вязкости:

1) прозрачных жидкостей – серии ВПЖ и ВПЖТ;

2) малых объемов прозрачных жидкостей – серии ВПЖМ и ВПЖТМ;

3) непрозрачных жидкостей – серии ВНЖ и ВНЖТ.

На рис. 1 и 2 представлен общий вид вискозиметров серии ВПЖ.

» data-medium-file=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?fit=144%2C300&ssl=1″ data-large-file=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?fit=182%2C380&ssl=1″ src=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?resize=144%2C300″ alt=»Вискозиметр стеклянный капиллярный ВПЖ-1″ width=»144″ height=»300″ srcset=»https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?resize=144%2C300&ssl=1 144w, https://i2.wp.com/pharmacopoeia.ru/wp-content/uploads/2016/10/viskozimetr-steklyannyj-kapillyarnyj-VPZH-1-2.png?w=182&ssl=1 182w» sizes=»(max-width: 144px) 100vw, 144px» data-recalc-dims=»1″ />

Вискозиметр стеклянный капиллярный ВПЖ-1

Рисунок 1 – Вискозиметр стеклянный капиллярный ВПЖ-1

1, 2, 4 – трубки; 3 – измерительный резервуар;

М1, М2 – отметки измерительного резервуара.

Рисунок 2 – Вискозиметр стеклянный капиллярный ВПЖ-2

1, 2 – трубки; 3 – измерительный резервуар;

М1, М2 – отметки измерительного резервуара.

Вискозиметр состоит из капилляра с радиусом R и длиной L, через который под действием силы тяжести протекает жидкость объема V.

Если Н – средняя высота жидкости, g – ускорение силы тяжести, то кинематическая вязкость (ν) в миллиметрах квадратных на секунду (мм 2 ∙ с -1 ) равна:

где – постоянная прибора, обычно выражаемая в миллиметрах квадратных на секунду квадратную (мм 2 ∙ с -2 ).

Если известна плотность испытуемой жидкости ρ, то, зная v, можно вычислить динамическую вязкость η (мПа ∙ с):

ρ – плотность испытуемой жидкости (мг∙мм -3 ), полученная умножением относительной плотности (d) на 0,9982.

Для определения вязкости в каждом конкретном случае капиллярные вискозиметры выбирают в соответствии с табл. 1 и 2 по известным значениям К и V в зависимости от характера испытуемой жидкости, ее объема и значения вязкости.

Методика. Перед проведением измерений вискозиметр следует тщательно промыть и высушить.

В колено трубки 2 вискозиметра наливают измеренный объем жидкости и вискозиметр помещают в вертикальном положении в водяной термостат с температурой (20 ± 0,1) о С, если в фармакопейной статье не указана другая температура, удерживая его в этом положении не менее 30 мин для установления температурного равновесия. Производят повышение уровня жидкости в вискозиметре через отверстие 1 (в случае вискозиметра ВПЖ-1 закрывают трубку 4) до тех пор, пока жидкость не поднимется выше отметки М1. Тогда повышение уровня прекращают, и жидкость опускается. Время t, которое требуется, чтобы мениск прошел расстояние между отметками М1 и М2, замеряют секундомером с точностью до 0,2 с.

Время истечения испытуемой жидкости определяют как среднее не менее чем трех измерений. Полученные данные являются приемлемыми при условии, что результаты двух последовательных измерений отличаются не более чем на 1 %.

Для определения относительной вязкости жидкости ηотн измеряют время истечения между верхней и нижней меткой мениска той жидкости, относительно которой проводят измерения tоср. Затем в том же чистом и сухом вискозиметре при тех же условиях определяют время истечения испытуемой жидкости tcp..

Одновременно при той же температуре, при которой определяют вязкость, измеряют плотности испытуемых жидкостей ρо и ρ пикнометрическим методом и рассчитывают относительную вязкость по формуле:

(8)

Для определения характеристической вязкости готовят не менее 5 испытуемых растворов различной концентрации. При этом должно выполняться условие возможности линейной экстраполяции приведенной вязкости к нулевой концентрации, т.е. концентрации раствора следует выбирать минимальными в пределах чувствительности и точности метода измерения. Для каждой концентрации раствора определяют tcp. и рассчитывают приведенную вязкость. Затем строят зависимость ηприв. от концентрации с и графически или линейным методом наименьших квадратов экстраполируют приведенную вязкость к нулевой концентрации, т.е. находят характеристическую вязкость.

Таблица 1 — Характеристики капиллярных вискозиметров серии ВПЖ-1 и ВПЖТ-1

Диапазон измерения вязкости, мм 2 /с

Читайте также:  Как сделать плазморез своими руками из инвертора; Плазменная резка

Вязкость воды H2O

Кинематическая вязкость воды при различных температурах

Вода H2O представляет собой ньютоновскую жидкость и ее течение описывается законом вязкого трения Ньютона, в уравнении которого коэффициент пропорциональности называется коэффициентом вязкости, или просто вязкостью.

Вязкость воды зависит от температуры. Кинематическая вязкость воды равна 1,006·10 -6 м 2 /с при температуре 20°С.

В таблице представлены значения кинематической вязкости воды в зависимости от температуры при атмосферном давлении (760 мм.рт.ст.). Значения вязкости даны в интервале температуры от 0 до 300°С. При температуре воды свыше 100°С, ее кинематическая вязкость указана в таблице на линии насыщения.

Кинематическая вязкость воды изменяет свою величину при нагревании и охлаждении. По данным таблицы видно, что с ростом температуры воды ее кинематическая вязкость уменьшается. Если сравнить вязкость воды при различных температурах, например при 0 и 300°С, то очевидно ее уменьшение примерно в 14 раз. То есть вода при нагревании становится менее вязкой, а высокая вязкость воды достигается если воду максимально охладить.

Значения коэффициента кинематической вязкости при различных температурах необходимы для вычисления величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

Кинематическая вязкость воды — таблица

t , °С 20 40 60 80 100 120 140
ν ·10 6 , м 2 /с 1,789 1,006 0,659 0,478 0,365 0,295 0,252 0,217
t , °С 160 180 200 220 240 260 280 300
ν ·10 6 , м 2 /с 0,191 0,173 0,158 0,148 0,141 0,135 0,131 0,128

Если сравнить вязкость воды с вязкостью других ньютоновских жидкостей, например с кровью, или с маслами, то вода будет иметь меньшую вязкость. Менее вязкими, по сравнению с водой, являются органические жидкости – ацетон, бензол и сжиженные газы, например такие, как жидкий азот.

Динамическая вязкость воды в зависимости от температуры

Кинематическая и динамическая вязкость связаны между собой через значение плотности. Если кинематическую вязкость умножить на плотность, то получим величину коэффициента динамической вязкости (или просто динамическую вязкость).

Динамическая вязкость воды при температуре 20°С равна 1004·10 -6 Па·с. В таблице даны значения коэффициента динамической вязкости воды в зависимости от температуры при нормальном атмосферном давлении (760 мм.рт.ст.). Вязкость в таблице указана при температуре от 0 до 300°С.

Динамическая вязкость воды — таблица

t , °С 20 40 60 80 100 120 140
μ ·10 6 , Па·с 1788 1004 653,3 469,9 355,1 282,5 237,4 201,1
t , °С 160 180 200 220 240 260 280 300
μ ·10 6 , Па·с 173,6 153,0 136,4 124,6 114,8 105,9 98,1 91,2

Динамическая вязкость при нагревании воды уменьшается, вода становится менее вязкой и при достижении температуры кипения 100°С величина вязкости воды составляет всего 282,5·10 -6 Па·с.

Вязкость воды

Вязкость воды – весьма важное для всей нашей планеты свойство воды, с которым мы соприкасаемся каждый день.

Краткое определение «вязкости воды» мы уже давали в нашем материале – Химические и физические свойства воды. В данном материале мы дадим более развернутое определение этому термину.

Что такое вязкость жидкостей

Вязкость присутствует у всех веществ обладающих текучестью. Текучесть — это перемещение / сдвиг одних частиц вещества относительно других частиц этого же вещества. Вязкость же, благодаря силе внутреннего трения, возникающему между частицами, оказывает сопротивление процессу текучести. Эта формулировка верна для газообразных и жидких веществ. Вязкость твердых веществ имеет несколько иную природу и описывается отдельно.

Вязкость жидкостей подразделяется на два вида – кинематическую вязкость и динамическую, которую еще называют абсолютной или простой и зависит от концентрации раствора, давления и температуры.

Аномалия вязкости воды проявляется в том, что при росте температуры или давления она уменьшается.

Динамическая и кинематическая вязкость воды (жидкостей)

Динамическая вязкость – величина, определяющая величину сопротивления текучести воды при перемещении слоя площадью 1 см 2 на расстояние 1 см, со скоростью 1 см/сек.

Читайте также:  Замена воздушного фильтра лада гранта - подробное описание 1

Измеряется Динамическая вязкость в таких единицах:

  • Международная система единиц (СИ) — единица измерения Па•с (паскаль•секунда);
  • Система СГС — единица измерения «пуаз».

Кинематическая вязкость – величина, определяющая величину сопротивления «текучести» воды под силой собственной тяжести. Кинематическая вязкость исчисляется в стоксах и определяется как отношение Динамической вязкости к ее плотности.

Так например Кинематическая вязкость воды при температуре 0°С равна 1,789 •10 6 , м 2 /с .

Значение вязкости воды

Значение вязкости для процессов, происходящих на нашей планете весьма велико. Описать все ее проявления в рамках одного материала просто невозможно.

Поэтому отметим наиболее важные из них для человека:

  • Вязкость воды определяет вязкость крови у всех живых существ, в том числе и у человека;
  • Если бы вода обладала, более низкой вязкостью то тонкие структуры капилляров человека разрушились бы;
  • Благодаря аномалии плотности воды подземные воды могут двигаться, в том числе и по направлению к поверхности Земли;
  • Благодаря своей относительно небольшой вязкости вода весьма текуча и способна переносить значительные количества растворенных в ней и взвешенных частиц;

Как и все остальные свойства воды, вязкость играет незаменимую роль для всей нашей планеты.

Вязкость воды

ДАТА СОЗДАНИЯ ПУБЛИКАЦИИ: Дек 7, 2015 17:17 Waterman

Вам также может понравиться

Вода — вещество или явление .

Теплопроводность воды

Производство питьевой воды

У этой записи 3 комментариев

Все свойства воды сверхзначимы для человека … просто как правило мы не знаем где и как они проявляются в обычной жизни …

про одни свойства мы знаем а другие нет … знание сила

Вязкость воды — десять в шестой степени. Может, это вязкость оконного стекла?

Добавить комментарий Отменить ответ

Поиск по сайту

Публикации

  • Норма влажности в квартире, или что такое микроклимат в помещении
  • Народные приметы о погоде на август
  • Абсолютная и относительная влажность воздуха — как их рассчитать и как влажность влияет на погоду и самочувствие
  • Пляж — болезни которыми можно заразиться на пляже от песка и воды
  • Купаться запрещено! Грязная вода — признаки грязной воды в водоёмах
  • Рассчитать индекс массы тела (ИМТ) — онлайн калькулятор идеального веса
  • История кофе — история мирной экспансии
  • Состав кофе — любимый напиток под микроскопом
  • Туалетная бумага и коронавирус — уже не шутки, уже проблемы …
  • Кипячение воды и коронавирусы
  • Очистка воды на даче или в частных домах — натуральные очистители воды
  • Свойства воды в твёрдом состоянии

Концепция и реализация проекта «Вода | H2O и Водные ресурсы» Copyright vodamama.com .

Политика конфиденциальности / Условия и положения использования сайта — Privacy policy / Terms and conditions

Все материалы сайта защищены Законом «Об авторском праве и смежных правах». Сайт – vodamama.com является общедоступным и работает в рамках и в соответствии с действующим законодательством Украины.

Копирование и перепечатка любых текстовых материалов, размещенных на сайте vodamama.com , разрешается только при условии размещения прямой активной, открытой для индексирования поисковыми машинами, гиперссылки на источник материала. Гиперссылка должна быть такого содержания — Источник: Вода | H2O и Водные ресурсы [ ссылка на страницу сайта ] . Эта ссылка должна быть размещена вне зависимости от объема используемого текста.

Администрация ресурса может не разделять мнение автора. При подготовке материалов информация берётся из общедоступных источников и специальной проверки на достоверность не проходит.

Администрация сайта радикально негативно относится к нарушениям авторских или каких либо других имущественных прав. Поэтому, если Вы вдруг обнаружили, что на страницах нашего сайта нарушены, какие либо авторские или имущественные права, просим вас незамедлительно, воспользовавшись формой обратной связи, сообщить нам про это. После получения подтверждения нарушения мы незамедлительно устраним его.

Ссылка на основную публикацию
Adblock detector